PELATIHAN KODING DAN KECERDASAN ARTIFISIAL UNTUK GURU-GURU PENGGERAK PADA BALAI GURU PENGGERAK PROVINSI BALI

Penulis

  • I Made Candiasa Univesitas Pendidikan Ganesha
  • Ni Made Sri Mertasari Universitas Pendidikan Ganesha
  • Gede Ratnaya Universitas Pendidikan Ganesha
  • Nyoman Santiyadnya Universitas Pendidikan Ganesha
  • Ni Ketut Widiartini Universitas Pendidikan Ganesha

Kata Kunci:

koding, kecerdasan artifisial, guru penggerak, heuristik, evaluasi

Abstrak

Guru sangat berperan dalam menciptakan ekosistem pembelajaran yang kolaboratif, berbasis teknologi, serta mampu mengembangkan potensi peserta didik secara optimal. Namun kompetensi guru di bidang koding dan kecerdasan artifisial dipandang belum optimal dan belum merata. Diperlukan “Pelatihan Koding dan Kecerdasan Artifisial untuk Guru-guru Penggerak pada Balai Guru Penggerak Provinsi Bali.” Pengabdian diawali dengan focus group discussions (FGD) melibatkan pelaksana pengabdian dan pengelola Balai Guru Penggerak Provinsi Bali untuk membahas program pengabdian. Setelah FGD, pelatihan dilaksanakan dengan model heuristik yang sudah teruji mampu menghasilkan keterampilan koding dalam waktu singkat. Sambil melakukan evaluasi formatif, tim pengabdian terus melakukan pendampingan, sementara pengelola melakukan pemantauan. Setelah pembelajaran berakhir dilakukan evaluasi sumatif oleh instruktur, pengelola, dan tim independen. Hasil evaluasi menunjukkan bahwa pelatihan mampu meningkatkan keterampilan koding para guru penggerak. Guru penggerak diminta mendiseminasikan keterampilan kepada para guru. Hasil akhir yang diharapkan adalah peningkatan kompetensi peserta didik di bidang koding dan kecerdasan artifisial.

Referensi

Aoki1, Yoichi et al. (2024). First Heuristic Then Rational: Dynamic Use of Heuristics in Language Model Reasoning. Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 14255–14271 November 12-16, 2024 ©2024 Association for Computational Linguistics.

Badan Standar, Kurikulum, dan Asesmen Pendidikan, Kementerian Pendidikan Dasar dan Menengah Republik Indonesia. (2025). Naskah Akademik Pembelajaran Koding dan Kecerdasan Artifisial Pada Pendidikan Dasar dan Menengah. Februari, 2025.

Doz, Daniel, Eleonora Doz. (2022). Introducing Probability Theory through Heuristics: A Laboratory for High School Students. MATHEMATICS TEACHING RESEARCH JOURNAL. GOLDEN FALL 2022 Vol 14 no 3.

Europian Comission. (2024) Industry 5.0. https://research-and-innovation.ec. europa.eu /research-area/industrial-research-and-innovation/industry-50_en.

Ilhan, A., & Akin, M. F. (2022). Analysis of Contextual Problem Solutions, Mathematical Sentences, and Misconceptions of Pre-Service Mathematics Teachers. International Electronic Journal of Mathematics Education, 17(1), em0666. https://doi.org/10.29333/iejme/11470.

Jeremy Rifkin, Nicolas Easley. "Jeremy Rifkin and The Third Industrial Revolution Home Page". thethirdindustrialrevolution.com. Diakses 18 Agustus 2024.

Kadir Alpaslan Demir & Halil Cicibaş. (2017) The Next Industrial Revolution: Industry 5.0 and Discussions on Industry 4.0. 4th International Management Information Systems Conference “Industry 4.0” October 17-20, 2017 İstanbul University, İstanbul, Turkey.

Ketkar, Nikhil & Jojo Moolayil. (2021) Deep Learning with Python Learn Best Practices of Deep Learning Models with PyTorch: Second Edition. Apress.

Klaus Schwab. (2016) The Fourth Industrial Revolution. World Economic Forum. Geneva Switzerland.

Loppies, M., Kulyasin, & Ayesma, P. . (2024). The Effectiveness of Contextual Problem Based Learning Model and Personality Types on Students History Learning Outcomes. Thinking Skills and Creativity Journal, 7(1), 42–49. https://doi.org/10.23887/tscj.v7i1.78858

Methling, Florian, Sara J.M. Abdeen, Rüdiger von Nitzsch. (2022). Heuristics in multi-criteria decision-making: The cost of fast and frugal decisions. EURO Journal on Decision Processes. Volume 10, 2022, 100013

Momenta, Digital Delivered. (2022) INDUSTRY 5.0 Purpose-Driven Technology Adoption for People and the Planet. https://www.momenta.one/hubfs/ Resources/Reports-and-Surveys/Momenta-Industry%205.0-Report-2022.pdf.

Müller, Andreas C. and Sarah Guido. (2017) Introduction to Machine Learning with Python. Sebastopol, CA: O’Reilly Media, Inc.

Pratiwi, Shinta & Widjajanti, Djamilah. (2020). Contextual problem in mathematical problem solving: core ability in Realistic Mathematics Education. Journal of Physics: Conference Series. 1613. 012018. 10.1088/1742-6596/1613/1/012018.

Samola, Alex and S.V.N Vishwanatahan. (2008) Introduction to Machine Learning. Cambridge: Cambridge University Press.

Zollanvari, Amin. (2023). Machine Learning with Python: Theory and Implementation. 10.1007/978-3-031-33342-2.

Unduhan

Diterbitkan

31-10-2025