TRENDS IN CORPORATE BANKRUPTCY PREDICTION MODELS: A LITERATURE REVIEW

Authors

  • Muhammad Raihan Ali Faculty of Economics, Universitas Pendidikan Ganesha, Indonesia
  • Sunitha Devi Faculty of Economics, Universitas Pendidikan Ganesha, Indonesia
  • I Gede Agus Pertama Yudantara Faculty of Economics, Universitas Pendidikan Ganesha, Indonesia
  • I Made Pradnyana Paradila Faculty of Economics, Universitas Pendidikan Ganesha, Indonesia

Keywords:

bankruptcy prediction, Financial distress, Altman Z-Score, Indonesia, Machine learning

Abstract

This study investigates the evolving landscape of corporate bankruptcy prediction models in Indonesia, focusing on their methodological diversity, sectoral applicability, and contextual relevance in the post-pandemic era. The increasing financial fragility of Indonesian firms particularly in manufacturing, construction, and services underscores the urgency for accurate early-warning systems tailored to local economic dynamics. This review fills a gap in prior research by systematically mapping traditional models (e.g., Altman Z-Score, Zmijewski, Ohlson) and emerging approaches (e.g., machine learning, hybrid models) within the Indonesian context. Using a narrative literature review method, 32 relevant studies were thematically analyzed to capture trends in model usage, performance, and sector-specific calibration. The findings reveal that while classical models remain dominant in capital-intensive industries due to their simplicity and interpretability, their performance weakens in asset-light sectors. In contrast, machine learning methods—such as Random Forest and XGBoost—demonstrate higher predictive accuracy in dynamic and data-rich environments but face challenges of interpretability and regulatory acceptance. A growing body of research also supports the integration of non-financial variables, including ESG indicators, audit quality, and corporate governance. The study concludes that future research should focus on hybrid model development, underexplored sectors such as MSMEs, and improved data infrastructure. These insights offer actionable implications for policymakers, regulators, and industry stakeholders in strengthening corporate financial resilience and developing more inclusive, adaptive predictive frameworks.

References

Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance, 23(4), 589-609.

Altman, E. I., & Hotchkiss, E. (2010). Corporate financial distress and bankruptcy: Predict and avoid bankruptcy, analyze and invest in distressed debt (3rd ed., Vol. 289). John Wiley & Sons.

Awaliah, R., Damayanti, R. A., & Usman, A. (2022). Tren Penghindaran Pajak Perusahaan di Indonesia yang Terdaftar di BEI Melalui Analisis Effective Tax Rate (ETR) Perusahaan. Jurnal Bisnis dan Akuntansi Kontemporer, 15(1), 1-11.

Azizah, N., & Kartika, A. (2021). Analisis prediksi kebangkrutan menggunakan model Altman Z-Score dan Springate pada sektor konstruksi. Jurnal Ilmiah Akuntansi dan Finansial Indonesia, 8(2), 45–58. https://jurnal.unpad.ac.id/jafi/article/view/28911

Bandi, M. H., & Nurmalina, R. (2023). Analisis kebangkrutan menggunakan metode Springate (studi kasus pada PT. Garuda Indonesia, Tbk tahun 2018–2020). Journal of Economics and Banking, 5(1).

Chandra, S., Pratama, I., & Kusumawardhani, A. (2024). Evaluation of prediction accuracy models for bankruptcy in Indonesian banks. Kocaeli University Education Journal, 4(2), 1–12. https://kuey.net/index.php/kuey/article/view/2224

Dasilas, A., & Rigani, A. (2024). Machine learning techniques in bankruptcy prediction: A systematic literature review. Expert Systems with Applications, 255, 124761. https://doi.org/10.1016/j.eswa.2024.124761

Duricova, L., Kovalova, E., Gnan, L., & Zinecker, M. (2025). Refining V4 financial distress prediction models in the light of crisis periods. Applied Sciences, 15(6), 2956. https://doi.org/10.3390/app15062956

Dwiarti, R., Hazmi, S., & Santosa, A. (2021). Does bankruptcy matter in non-banking financial sector companies?: Evidence from Indonesia. The Journal of Asian Finance, Economics and Business, 8(5), 735–742. https://koreascience.kr/article/JAKO202106438543380.pdf

Gaurav, A., Gupta, B. B., Bansal, S., & Psannis, K. E. (2025). Bankruptcy forecasting in enterprises and its security using hybrid deep learning models. Cyber Security and Applications, 5, 100036. https://doi.org/10.1016/j.cs2.2024.100036

Hambani, S., Afif, M. N., & Triwidatin, Y. (2023). Analisis potensi kebangkrutan pada maskapai penerbangan di Indonesia dengan metode Altman Z-Score. Jurnal Akuntansi UNIDA, 7(1).

Hamdi, M., Mestiri, S., & Arbi, A. (2024). Artificial intelligence techniques for bankruptcy prediction of Tunisian companies: An application of machine learning and deep learning-based models. Journal of Risk and Financial Management, 17(4), 132. https://doi.org/10.3390/jrfm17040132

Harsono, B., & Gandakusuma, I. (2023). Discriminant analysis of insurance companies in Indonesia. In Proceedings of the 7th GCBME. Atlantis Press. https://www.atlantis-press.com/proceedings/gcbme-22/125991972

Ichwanudin, W. (2022). Building a model to assess signaling theory in its correlation between capital structure and firm value. Eprints UNTIRTA. https://eprints.untirta.ac.id/24108

Ihsan, D. N., & Kartika, S. P. (2015). Potensi kebangkrutan pada sektor perbankan syariah. Jurnal Etikonomi, 14(2).

Jensen, M. C., & Smith, C. W. (1985). Stockholder, manager, and creditor interests: Applications of agency theory. Social Science Research Network. https://doi.org/10.2139/SSRN.173461

Kristanti, F. T., Febrianta, M. Y., & Salim, D. F. (2024). Predicting financial distress in Indonesian companies using machine learning. Engineering, Technology & Applied Science Research, 14(2), 9842–9848. https://www.etasr.com/index.php/ETASR/article/view/8520

Martono, N. P., & Ohwada, H. (2022). Financial distress model prediction using machine learning: A case study on Indonesia's consumers cyclical companies. In Proceedings of the European Conference on Machine Learning (ECML). Springer.

Matejić, T., Knežević, S., Arsić, V. B., & Obradović, T. (2022). Assessing the impact of the COVID-19 crisis on hotel industry bankruptcy risk through novel forecasting models. Sustainability, 14(8), 4680. https://doi.org/10.3390/su14084680

Mujanah, S., & Djumaiyah, D. (2024). Analisis bibliometrik: Tren penelitian kesulitan keuangan di Indonesia. Manageria: Journal of Islamic Management and Business, 9(1).

Munandar, A., Rahmatiah, N. N., & Syahputri, R. (2023). Penilaian kebangkrutan perusahaan sub sektor konstruksi dan bangunan periode 2019–2021 dengan metode Altman Z-Score. Jurnal Cahaya Mandalika, 4(2).

Myers, S. C., & Majluf, N. S. (1984). Corporate financing and investment decisions when firms have information that investors do not have. Journal of Financial Economics, 13(2), 187-221.

Nasution, S. A., & Siregar, M. (2020). Binary logit: Prediksi gejala kebangkrutan perusahaan. Jurnal Ilmiah MEA, 4(2).

Nuraini, N., & Meiranto, W. (2021). Prediksi kebangkrutan perusahaan manufaktur di Indonesia menggunakan model Altman Z-Score. Jurnal Akuntansi dan Keuangan Indonesia, 18(1), 23–39. https://jurnal.unpad.ac.id/jafi/article/view/28911

Platt, H. D., & Platt, M. B. (2002). Predicting corporate financial distress: Reflections on choice-based sample bias. Journal of Economics and Finance, 26(2), 184-199.

Putra, A., Sari, D., & Oemar, A. (2022). Bankruptcy prediction model for public companies in Indonesia stock exchange. SSRN Electronic Journal. https://www.researchgate.net/publication/365840665_Bankruptcy_prediction_model_for_public_companies_in_Indonesia_stock_exchange

Rahayu, S. K., Widodo, A. P., & Solikhin, M. (2016). Financial distress prediction in telecommunications sector: A case study in Indonesia. Al-Buhuts, 12(2), 45–56. https://journal.iaingorontalo.ac.id/index.php/ab/article/view/2640

Raza, H., Ashraf, S., Almeida, A. M., Ramzan, S., & Siqueira, E. S. (2024). Does ESG predict business failure in Brazil? Machine learning approach. Risks, 12(12), 185. https://doi.org/10.3390/risks12120185

Sari, D., & Oemar, A. (2020). The accuracy of the Altman, Ohlson, Springate, and Zmijewski models in bankruptcy predicting trade sector companies in Indonesia. ResearchGate. https://www.researchgate.net/publication/339297092_The_Accuracy_of_the_Altman_Ohlson_Springate_and_Zmejewski_Models_in_Bankruptcy_Predicting_Trade_Sector_Companies_in_Indonesia

Satoto, E. B. (2024). Capital structure's role in shaping stock return dynamics. JBMP (Jurnal Bisnis, Manajemen dan Perbankan). https://jbmp.umsida.ac.id/index.php/jbmp/article/view/1807

Satria, A., Gaol, S. L., & Indrawan, D. (2024). Financial risk, debt, and efficiency in Indonesia's construction industry: A comparative study of SOEs and private companies. Journal of Risk and Financial Management, 17(7), 303. https://doi.org/10.3390/jrfm17070303

Seto, S., & Lam, W. S. (2023). Financial distress analysis of technology companies using Grover model. Computer Sciences & Mathematics Forum, 7(1), 6. https://www.mdpi.com/2813-0324/7/1/6

Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039

Spence, M. (1973). Job market signaling. Quarterly Journal of Economics, 87(3), 355-374.

Syamni, S., Liew, K. F., & Lam, W. S. (2023). Financial distress analysis of technology companies using Grover model. Computer Sciences & Mathematics Forum, 7(1), 6. https://www.mdpi.com/2813-0324/7/1/6

Tarighi, H., Appolloni, A., Shirzad, A., & Azad, A. (2022). Corporate social responsibility disclosure (CSRD) and financial distress risk (FDR): Does institutional ownership matter? Sustainability, 14(2), 742. https://doi.org/10.3390/su14020742

Thomas, J., & Harden, A. (2008). Methods for the thematic synthesis of qualitative research in systematic reviews. BMC Medical Research Methodology, 8(1), 45. https://doi.org/10.1186/1471-2288-8-45

Toudas, K., Archontakis, S., & Boufounou, P. (2024). Corporate bankruptcy prediction models: Construction sector evidence. Computation, 12(1), 9. https://doi.org/10.3390/computation12010009

Vásquez-Serpa, L. J., Rodríguez, C., Pérez-Núñez, J. R., & Navarro, C. (2025). Challenges of Artificial Intelligence for the Prevention and Identification of Bankruptcy Risk in Financial Institutions: A Systematic Review. Journal of Risk and Financial Management, 18(1), 26.

Vuković, B., Milutinović, S., Peštović, K., & Tica, T. (2023). Early insolvency prediction for sustainable growth. Sustainability, 15(21), 15304. https://doi.org/10.3390/su152115304

Vuković, D., Jovanović, D., & Đurić, S. (2023). Revisiting the Altman Z-Score: Applicability in transitional economies. Journal of Risk and Financial Management, 16(4), 210. https://doi.org/10.3390/jrfm16040210

Wahyuni, N., & Gani, A. A. (2022). Reviewing the firm value in terms of profit, debt, and growth. Jurnal Manajemen. http://ecojoin.org/index.php/EJM/article/view/843

Youlanda, E. (2021). Analisis kinerja keuangan menggunakan Altman Z-Score sebelum dan sesudah COVID-19. Universitas Jambi.

Yulianti, S. D., Linawati, L., & Sugeng, S. (2022). Analisis kebangkrutan dengan metode Altman Z”-Score pada perusahaan transportasi di BEI. Repositori UNP Kediri.

Downloads

Published

2025-10-15

How to Cite

Ali, M. R., Devi, S., Yudantara, I. G. A. P., & Paradila, I. M. P. (2025). TRENDS IN CORPORATE BANKRUPTCY PREDICTION MODELS: A LITERATURE REVIEW. Proceeding of TEAMS: The International Conference on Tourism, Economic, Accounting, Management and Social Science, 10, 700–714. Retrieved from https://eproceeding.undiksha.ac.id/index.php/teams/article/view/1148